

Fuel Demand Prediction for Regional Hurricane Evacuation in Louisiana

N. Raju Gottumukkala Ph.D

NIMSAT Institute, University of Louisiana at Lafayette

Louisiana Department of Natural Resources, Baton Rouge, LA 06/01/2012

CONNECTING FOR A RESILIENT AMERICA

Background

Motivation

 LA-DNR Fuel Team requires visibility on fuel requirements & available capacity to minimize fuel related emergencies

- Texas: Hurricane Rita
- Louisiana: Hurricane Gustav & Ike
 - Fuel demand increased by 400%
 - Allocation of Generators
 - Challenges identifying fuel outages

- Provide fuel demand, fuel deficit and evacuation traffic estimates along various evacuation highways during hurricane evacuation(s)
 - Estimated Traffic, fuel demand and available fuel in GIS Maps
 - Data for a 5 –day period including the day of landfall and 4 days prior to landfall
 - In 6-hour intervals
 - Interstates & state highways
 - Data specific to track & evacuation scenario

Applications

- Inform gas station owners about the expected fuel demand
 - Helps them plan and schedule deliveries ahead of time
- Inform distributors & Bulk suppliers
 - Visibility on areas that are likely to have fuel outages
- Emergency fuel supply
 - Positioning/scheduling emergency fuel in areas that are likely to have fuel outages

Approach

1. Evacuee Behavior Study

Develop a evacuee behavior model based on historical preferences, i.e.
 when, where and how they evacuated for various hurricanes

2. Generate Origin Destination matrices

 Generate origins and destinations matrices based on where people evacuate from and where they will evacuate

3. Predict Evacuee Traffic using Transportation-based Evacuation Model

 Use the evacuee behavior parameters and the evacuation transportation network configuration to forecast evacuation traffic

4. Estimate Fuel Demand & Deficit

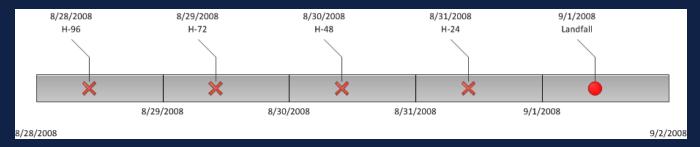
- Translate evacuation traffic to fuel demand based on the total number of vehicles that will stop for gas at each gas station
- Estimate fuel deficit based on the difference between the available fuel capacity and demand

Work product description

- Interactive GIS Map
 - Zoom in, zoom out
 - Select a particular segment to see the actual numbers
 - Time slider to know the evacuation traffic & fuel results at various times
 - Chart to understand the trends over the five day period
- Shows the following layers
 - Evacuation Traffic, Fuel Demand, Fuel Availability
 - Gas stations
 - Hurricane Track
 - Evacuation Orders for various parishes
 - Contraflow, Road closures & DOTD Traffic cameras
- A printable map
 - For demonstrating this product to the UCG meeting

Demonstration

http://sonris-www.dnr.state.la.us/gis/fst/map/


Timeline & Responsibilities (Not-Finalized)

• LA-DNR

- Initiates a request for the work product
- GIS Team provides hurricane track from NOAA, evacuating orders from the LSP, Traffic updates from LA-DOTD
 - As needed and updated by NOAA, LSP and LA-DOTD

NIMSAT Institute

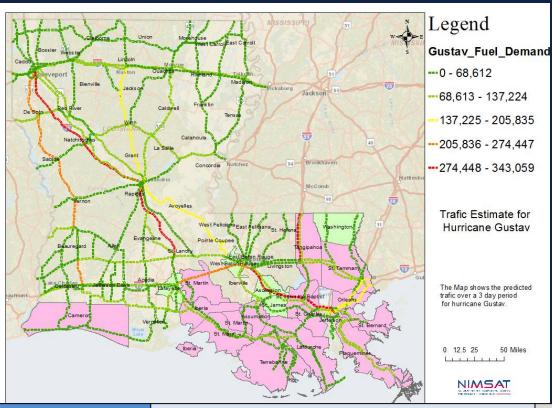
- Observes the track, contraflow orders, road closures, evacuation orders to determine the best possible scenario
- Runs the model
- Publishes the fuel demand, fuel availability & traffic estimates
- Provides model results once every 24 hours

Limitations

- Results are estimates
 - Traffic estimates are +/- 27% on the average
 - Observations on fuel data are not available
- Some key assumptions
 - For estimating fuel deficit (or availability), gas stations are assumed to be operating at 60% capacity 4 days prior to landfall and no refueling happens
 - We have accurate gas station storage data for 575 gas stations (out of 2670 stations)
 - Vehicles fill up 16 gallons of fuel when they stop for fuel

Acknowledgements

- LA-DNR:
 - Sara Krupa, Stephen Chustz, Dallas Shearer
- UL Lafayette Dept. of Sociology
 - Bob Grambling, George Wooddell
- Neel-Schaeffer
 - Vijay Kunada
- UL Lafayette Transportation Engineering
 - Dr. Xiaoduan Sun


Thank you

raju@louisiana.edu

Fuel Demand: Hurricane Gustav

- Areas with highest Fuel Demand
 - I-49 -Alexandria to Shreveport
 - I-49 -Lafayette to Alexandria
 - I-10 -New Orleans to 10-12 split
 - I-55 N (to Jackson)

HURRICANE GUSTAV					FUEL DEMAND												TOTAL
					T-96 to T-72			T-72 to T-48				T-48 to T-24				TOTAL	
RNO	LEN	ROUTE_DESC	NOG	Traffic	D3_N	D3_E	D3_A	D3_M	D2_N	D2_E	D2_A	D2_M	D1_N	D1_E	D1_A	D1_M	
1-0049	121	I-49 -Alexandria to Shreveport	30	57,655	3,078	5,197	9,726	18,334	12,039	22,287	41,689	78,601	12,883	21,758	40,712	76,755	343,059
1-0049	85	I-49 -Lafayette to Alexandria	46	75,764	2,846	4,800	8,981	16,934	11,119	20,582	38,502	72,592	11,895	20,096	37,597	70,885	316,829

Evacuation Traffic: Hurricane Gustav

- Highways with maximum
 Traffic
 - I-310 (US-90 to US-61 to I-10) After Kenner
 - I-10 (New Orleans to Eastern State Line going to MS)
 - I-610 (New Orleans)
 - I-10 (New Orleans to 10-12 split)
 - I-10 (10-12 split to Lafayette)

HURRICANE GUSTAV					TRAFFIC OVER A 3-DAY PERIOD											
					T-96 to T-72					T-72 to	T-48		T-48 to T-24			
RNO	LEN	ROUTE_DESC	NOG	Traffic	D3_N	D3_E	D3_A	D3_M	D2_N	DZ_E	D2_A	D2_M	D1_N	D1_E	D1_A	D1_M
1-0049	121	I-49 -Alexandria to Shreveport	30	57,633	507	836	1602	3020	1983	3671	6867	12947	2122	3584	6706	12643
1-0049	85	I-49 -Lafayette to Alexandria	667	1125	2105	3969	2606	4824	9024	17014	2788	4710	8812	667	1125	2105

Fuel Deficit: Hurricane Gustav

- Assumptions
 - Operating at 75% cap
- Highways with maximum fuel deficit
 - I-55 North to Jackson
 - I-49 Alexandria to Shv
 - US-90 LA-1 to MorganCity
 - US-79
 - LA 3127 (Shreveport)

